Как работает быстрая зарядка в телефоне
Оказывается, там тоже не всё так просто
Раньше мы рассказывали, как работает беспроводная зарядка. Теперь настало время быстрых зарядок — как они работают, за счёт чего достигается скорость и какие телефоны с этой зарядкой не совместимы.
О чём речь
Почти все современные телефоны поддерживают стандарт быстрой зарядки Quick Charge, он же QC. А на переносных аккумуляторах можно часто увидеть значок Power Delivery. Все эти знаки говорят нам, что смартфон можно зарядить плюс-минус за полчаса или даже быстрее, а в иных случаях можно зарядить даже ноутбук.
Чтобы это работало, нужно чтобы этот стандарт одновременно поддерживали:
Если одно из этих устройств быструю зарядку не поддерживает, то и заряжаться гаджет тоже быстро не будет.
Чтобы понять, как это хозяйство работает, нам нужно пройти такие этапы:
Принцип работы аккумулятора
В телефоне стоит аккумулятор — это устройство, которое накапливает электрический заряд и отдаёт его на работу смартфона.
Если сильно упростить, то аккумуляторы состоят из двух электродов и токопроводящей среды (электролита):
При подключении к аккумулятору электроприбора ионы с одного электрода начинают переходить к другому, и это создаёт нужное напряжение между ними:
При зарядке процесс идёт в обратную сторону: под действием внешнего тока ионы возвращаются обратно к первому электроду:
👉 А вот главный секрет: чем большую силу тока в амперах мы прикладываем, тем быстрее ионы возвращаются на место. То есть, чтобы накачать аккумулятор электричеством быстрее, нужно просто залить в него больше электричества с большей силой.
Как было до быстрой зарядки
До распространения USB у каждого мобильного телефона были свои стандарты зарядки: инженеры сами решали, как запитывать свои телефоны, и делали для них собственные блоки питания. Это было неудобно: если у тебя «Филипс», то зарядное устройство от «Нокии» тебе может не только не подойти, но и в некоторых случаях сломать твой телефон.
Потом с начала 2000-х в разных странах стали принимать законы, которые обязывали производителей не выделываться, а ставить на свои телефоны USB-зарядку. Это была такая мера защиты потребителя — чтобы можно было купить телефон отдельно, зарядное устройство отдельно, а в случае чего зарядить телефон от компьютера.
Но в тот момент существовал стандарт, который ограничивал силу тока по USB. Устройства должны были работать под напряжением 5 вольт с максимальной мощностью 5 ватт (соответственно, они должны требовать силу тока 1 ампер, потому что 5 вольт × 1 ампер = 5 ватт). Позднее стандарт расширили и разрешили делать зарядные устройства до 10 ватт.
Получалось, что, если у тебя в телефоне аккумулятор на 2—3 тысячи миллиампер часов, на зарядку одним ампером нужно было 2—3 часа, двумя амперами — час-полтора. Всё равно довольно долго.
Что придумали
Инженерам было страшно неудобно, что по USB можно передавать так мало тока. Например, у тебя был ноутбук: чтобы он работал, тебе нужно было 45 ватт мощности — чтобы крутить вентиляторы, питать процессор и диски, светить большим экраном и издавать звуки. По USB ты его никак не запитаешь, нужен отдельный блок питания — а это неудобно.
Инженеры решили упростить себе жизнь: внести изменения в стандарт USB, чтобы он мог поддерживать не 5 и не 10 ватт, а 20, 50 или даже 100 Вт. Задел был на то, чтобы запитывать от USB более мощные устройства — те же ноутбуки.
Но была проблема: если одновременно во всём мире сказать, что теперь по USB идёт другой ток, то что делать со старыми устройствами? Например, если у вас старый телефон, который работает на 5 вольтах, а вы в него воткнёте зарядное устройство на 20 вольт — что с ним станет? В лучшем случае сгорят регуляторы напряжения и телефон выключится. В худшем — сгорит сам телефон.
Тогда придумали, что протокол USB будет умным: теперь между источником тока и приёмником тока будет диалог, типа такого:
— Бонжур. Я устройство с быстрой зарядкой, могу отдавать 5, 10, 15 и 19,5 вольта. Предельная мощность — 60 ватт. Н-н-нада?
— Да, здарова. Дай мне, пожалуйста, 15 вольт.
— На тебе 15 вольт. Приятной зарядки!
А если устройство старое, то диалог будет таким:
— Бонжур. Я устройство с быстрой зарядкой, могу отдавать 5, 10, 15 и 19,5 вольта. Предельная мощность — 60 ватт. Желаете?
— Похоже, вы не желаете. На всякий случай дам вам 5 вольт.
Как быстрая зарядка заряжает аккумулятор
И вот мы берём два устройства с контроллерами QuickCharge. Соединяем их проводом, в нём тоже есть контроллер. Три контроллера договариваются между собой, какой им сейчас нужен ток. Зарядное устройство даёт этот ток. Все счастливы.
Чтобы зарядка шла ещё эффективнее, телефон смотрит на показатели батареи и процент заряда, чтобы скорректировать ток. Например, в самом начале он может заряжать большим током, а потом постоянно его снижать, чтобы не навредить батарее. Но для этого зарядка тоже должна поддерживать плавное снижение отдаваемой мощности.
Требования к проводам
Если у вас зарядный провод рассчитан на 5 ватт, под нагрузкой 45 ватт он может перегреваться и плавиться. Поэтому теперь в провода тоже встраивают контроллеры, которые говорят зарядному устройству: «Я рассчитан максимум на такую-то нагрузку». Соответственно, зарядное устройство больше не отдаст.
Получается, что быстрая зарядка — это когда у нас три подходящих устройства, которые договорились между собой заряжаться на условных 20 вольтах, 3 амперах. Получается мощность 60 Вт — это в 12 раз больше, чем по стандартному USB. На такой мощности можно заряжаться в 12 раз быстрее.
Как быстрая зарядка влияет на аккумулятор (и что будет дальше)
Раньше из-за перегрузки аккумулятора он мог перегреться, выйти из строя или даже взорваться. Сейчас контроллеры постоянно следят за температурой и снижают ток, если идёт перегрев.
А ещё современные аккумуляторы спокойно выдерживают стандартные 500—800 циклов даже быстрой зарядки, поэтому вывод такой: если заряжать блоком питания из комплекта с телефоном, то быстрая зарядка не испортит ваш аккумулятор быстрее, чем обычная. Всё дело в количестве циклов и правильности работы алгоритмов.
Но в целом физика и химия аккумулятора всё ещё несовершенна: это всё ещё довольно примитивная технология, аккумуляторы имеют свойство изнашиваться и «стареть», для их производства нужны токсичные и редкоземельные элементы. Некоторые аккумуляторы натурально взрываются. Поэтому учёные очень серьёзно исследуют возможности альтернативных аккумуляторов — например на графене.
Наши внуки наверняка будут ходить с пластинчатыми аккумуляторами толщиной как наши кредитные карты, которые будут заряжаться от тепла и движения. И для них съёмный аккумулятор от «Нокии» будет выглядеть так же дико, как для нас выглядят «телефоны-кирпичи» из начала 1990-х. Но пока так. Берегите аккумы!
Технологии быстрой зарядки: конец неразберихе
Пока аккумуляторы, способные обеспечить высокую ёмкость при малых размерах, находятся на стадии ранних прототипов, технологические компании нашли другой способ облегчить жизнь владельцам мощных смартфонов — быструю зарядку. Однако договориться о едином стандарте производители не смогли, и сейчас существует около десятка технологий быстрых зарядок, каждую из которых должен поддерживать не только смартфон, но и блок питания. Разобраться в таком многообразии трудно, но мы сделали это. Мы подробно расскажем о существующих стандартах, а также ответим на волнующие всех вопросы о совместимости и безопасности.
Принцип работы быстрой зарядки
Чтобы наполнить батарею быстрее, требуется зарядное устройство большей мощности. Если в обычных зарядках напряжение составляет 5 В, а сила тока — до 2-2,5 А, то в быстрых значения этих параметров могут доходить до 20 В и 5 А соответственно. Кроме того, в отличие от классических «медленных» зарядных устройств, большинство быстрых являются умными и умеют общаться со смартфоном по специальному протоколу. Наиболее яркий пример — технология Quick Charge 3.0 от Qualcomm. При использовании QC 3.0 смартфон непрерывно посылает зарядному устройству информацию о состоянии аккумулятора, на основании которой блок питания регулирует выходную мощность, изменяя напряжение и силу тока. В Qualcomm технологию умного переключения режимов назвали INOV — Intelligent Negotiation for Optimum Voltage, то есть интеллектуальное определение оптимального напряжения.
Наибольшую мощность блок питания выдаёт при зарядке почти совсем пустого аккумулятора — именно поэтому разработчики стандартов быстрой зарядки так любят оценить их эффективность по времени заряда первых 50% батареи. Например, Quick Charge 3.0 в начале зарядки использует напряжение 20 В, а затем понижает его вплоть до 3,2 В с шагом в 200 мВ.
Из вышесказанного следует, что для функции быстрой зарядки необходимо пользоваться комплектным зарядным устройством. Если его нет или блок питания вышел из строя, то можно приобрести сторонний, но обязательно сертифицированный аксессуар. Подделки быстрых зарядок пока не слишком распространены, но с этой технологией стоит быть максимально осторожным: подзарядка батареи в непредусмотренном режиме может привести к выходу гаджета из строя или даже пожару.
Стандарты
К настоящему времени своим стандартом быстрой зарядки обзавёлся практически каждый крупный производитель смартфонов и чипсетов. Мы начнём с наиболее распространённых, но постараемся упомянуть обо всех существующих, а также перспективных стандартах.
Quick Charge. Технология компании Qualcomm под названием Quick Charge стала первой среди стандартов быстрой зарядки и к сегодняшнему дню обзавелась уже третьим обновлением. Заявлена выходная мощность вплоть до 24 Вт и выше, но большинство зарядных устройств для смартфонов с поддержкой технологий QC 2.0 и QC 3.0 с INOV способны выдавать до 18 Вт, динамически регулируя напряжение в диапазоне от 3,2 до 20 В. Во всех промо-материалах указывается, что с данной технологией работают только гаджеты с процессорами Qualcomm — для версии Quick Charge 3.0 необходим Snapdragon 820, 620, 618, 617 или 430. Однако её можно найти и в смартфонах с другими SoC, например, Samsung Galaxy S7 поддерживает Quick Charge 2.0. Уже выпущено немало девайсов с поддержкой и третьей версии стандарта, включая LG G6. Представленный на MWC 2017 флагман корейского производителя оснащён аккумулятором ёмкостью 3300 мАч, полностью зарядить который получится за 96 минут.
Начиная с QC 2.0 устройства могут быть сертифицированы в соответствии с классом А или классом В. Согласно информации Qualcomm, зарядки класса А способны обеспечить мощность до 24 Вт с кабелем micro-USB и до 36 Вт с кабелем USB Type-C, а устройства класса В достигают 60 Вт и больше. Однако последних исчезающе мало (нам удалось найти автомобильную зарядку для ноутбука с поддержкой этой технологии), а сертификация по классу А, судя по всему, не определяет минимальные требования. Так или иначе, для большинства массовых гаджетов (и смартфонов, и блоков питания) с поддержкой Quick Charge максимальная мощность ограничена 18 Вт.
Осенью прошлого года Qualcomm представила четвёртую версию Quick Charge, которая сможет зарядить аккумулятор на 2750 мАч до 50% за 15 минут (на 20% быстрее по сравнению с QC 3.0). Точные характеристики будущих зарядок пока неизвестны, поэтому нам остаётся ждать смартфонов на чипсете Snapdragon 835, поддерживающем новую технологию.
TurboPower. Разработка компании Lenovo, выпущенная под брендом Motorola, основана на стандарте Quick Charge 2.0 и имеет с ним обратную совместимость. Главным отличием TurboPower стала увеличенная мощность — 25,8 Вт против типичных 18 Вт у QC 2.0. Технологию TurboPower поддерживают смартфоны Moto X Pure Edition и Droid Turbo 2, но пока непонятно, будет ли Lenovo развивать стандарт дальше и использовать его в своих аппаратах.
Pump Express. Ближайший конкурент Quick Charge — собственная технология компании MediaTek под названием Pump Express, успевшая получить уже третью версию. Особенностью Pump Express 3.0 является прямая (минуя встроенный контроллер) зарядка аккумулятора, когда слежением за температурой и режимом работы занимается блок питания. Для поддержки Pump Express 3.0 девайс обязательно должен иметь порт USB Type-C, а также один из поддерживаемых SoC (точный список компания не сообщает). Но, как и в случае с Quick Charge, информацию о совместимости с Pump Express необходимо уточнять для каждого конкретного смартфона. Например, поддержку стандарта получил Meizu Pro 6 с аккумулятором на 2560 мАч, который можно зарядить до 100% всего за час.
Adaptive Fast Charging. Из быстрых зарядок производителей смартфонов самый известный и распространённый, наверное, стандарт компании Samsung, который поддерживается всеми смартфонами S-серии начиная с Galaxy S6 и гаджетами линейки Note начиная с Galaxy Note 4. Максимальная мощность Adaptive Fast Charge составляет 15 Вт при напряжении 9 В — этого хватает, чтобы за полчаса наполовину зарядить аккумулятор Galaxy Note 5 на 3000 мАч.
VOOC Flash Charging/Dash Charge. В стороне от гонки быстрых зарядок не осталась и компания BBK, реализовавшая сразу два разных стандарта. Под брендом Oppo была представлена технология VOOC Flash Charging, которая способна обеспечить мощность 25 Вт при обычном напряжении в 5 В. На данный момент VOOC поддерживают семь различных смартфонов Oppo. Например, Oppo Find 7 с батареей на 3000 мАч за полчаса может зарядиться на 75%.
Что касается Dash Charge, то стандарт впервые появился вместе со смартфоном OnePlus 3. Отличие от VOOC, Dash Charge стал чуть менее мощным: при напряжении в 5 В он даёт лишь 20 Вт для зарядки аппарата. Другое заметное различие — поддержка зарядки только комплектным кабелем. OnePlus 3 благодаря Dash Charge может зарядиться до 63% за 30 минут, а полная зарядка занимает 75 минут.
Super Charge. Быстрая зарядка Huawei способна похвастаться не только незамысловатым названием, но и неплохими характеристиками: максимальная мощность до 22,5 Вт при напряжении 5 В. Работают с этой технологией пока только Huawei Mate 9 и Huawei P10/P10 Plus. Флагман оснащён батареей ёмкостью 4000 мАч, которую за полчаса получится зарядить до 57%.
Super mCharge. Наиболее многообещающей технологией на данный момент является разработка компании Meizu, показанная на MWC 2017. Блоки питания Super mCharge при напряжении 11 В смогут выдавать совсем уж невероятную мощность в 55 Вт — значение, которое ожидаешь от зарядного устройства ультрабука, но никак не смартфона. Это позволяет зарядить батарею на 3000 мАч всего за 20 минут. Помимо поддержки со стороны смартфона и зарядного устройства для Super mCharge требуется специальный кабель, способный работать на такой большой мощности. Однако пока непонятно, как именно блок питания будет определять тип кабеля (и будет ли вообще), ведь вставленный в зарядное устройство Super mCharge кабель с AliExpress легко может стать причиной пожара. Рабочие прототипы блока питания и смартфона со специальной батареей, как мы уже упоминали выше, были показаны в Барселоне, а выпустить первое массовое устройство с поддержкой данной технологии Meizu обещает в конце этого или начале следующего года.
USB Power Delivery — будущий отраслевой стандарт?
Ситуация с огромным количеством конкурирующих технологий на рынке не нравится Google. Владелец экосистемы хочет внедрить для всех Android-устройств единый стандарт быстрой зарядки через порт USB Type-C. Несмотря на то что стандарт под названием USB Power Delivery появился ещё три года назад, он до сих пор не получил широкого распространения. Но в скором времени всё может измениться: шаг навстречу Google уже сделала компания Qualcomm, которая сообщила о совместимости Quick Charge 4 с USB PD. За ней наверняка последуют и другие производители.
Особенностью USB Power Delivery является поддержка большого количества профилей, подходящих для зарядки любых устройств, от смартфонов до мощных ноутбуков. Пока работа USB PD предусмотрена в следующих режимах: 5 В/2 А (10 Вт), 12 В/1,5 А (18 Вт), 12 В/3 А (36 Вт), 12-20 В/3А (до 60 Вт) и 12-20 В/4,75-5 А (до 100 Вт). Несмотря на такие возможности и поддержку Google, широкого распространения USB Power Delivery среди Android-смартфонов можно ожидать не раньше чем через пару лет.
Для удобства мы занесли характеристики перечисленных выше типов быстрых зарядок в одну таблицу:
Как работает технология быстрой зарядки в смартфонах
Быстрая зарядка в смартфоне – это технология, которая работает по принципу увеличения силы тока, который подается на батарею от блока питания. Изначально блоки питания для зарядки мобильных устройств выдавали напряжение 5 В с силой 500-1000 мА. Но при таких параметрах теоретически за час можно восполнить на более 1000 мАч емкости аккумулятора смартфона. На практике это значение еще меньше, так как чем больше заряжена батарея – тем сильнее приходится уменьшать силу тока.
Принцип работы быстрой зарядки в смартфоне
Самым первым способом ускорить процесс зарядки стало повышение силы тока. Ранние технологии позволили выдавать силу тока до 2 ампер, при напряжении 5 вольт, что давало мощность в 10 ватт. Однако дальше двигаться таким путем оказалось сложно: для больших токов требуются толстые провода, так как от этого зависит сопротивление жил. С некачественным кабелем даже 2 А получить нелегко, так как возникнут просадки.
Использовать кабель с большим сечением жил проблематично, поэтому производители решили пойти путем увеличения напряжения, при сохранении прежней силы тока. Однако литиевые аккумуляторы требуют для заряда напряжения в узком диапазоне, подать «чистые» 12 В на контакты нельзя. Чтобы решить проблему, были разработаны специальные контроллеры заряда, которые встраиваются в чипсет или на материнскую плату. Они принимают напряжение выше 5 вольт, преобразуя его в оптимальное для аккумуляторных ячеек.
Виды быстрой зарядки для смартфонов
Для того, чтобы повысить скорость зарядки, производители комплектующих для смартфонов разрабатывают новые технологии быстрой зарядки. Компания Qualcomm предлагает QuickCharge, у MediaTek имеется конкурирующая PumpExpress, а у OPPO – аналог под названием VOOC. Samsung предлагает пользователям Fast Adaptive Charging. В смартфонах Asus имеется поддержка Asus BootMaster, в Motorola – TurboPower, а в Huawei – SmartPower.
Актуальные поколения QuickCharge и PumpExpress способны использовать разные напряжения, блоки питания могут выдавать от 5 до 12 В. Зарядное устройство взаимодействует с контроллером заряда, от которого получает «подсказки», какой ток и напряжение следует выдать в данный момент. Может использоваться как ступенчатое регулирование (5, 9, 12 В и т.д.), так и плавное (от 3,2 до 20 В, с шагом 200 мВ, применяется в QuickCharge 3.0).
Так как за беспроводную зарядку отвечает чипсет, то именно от него зависит тип используемой технологии. Самостоятельными можно считать методы Qualcomm, Samsung, Mediatek, Huawei, то есть, компаний, производящих чипсеты. Особняком стоит VOOC от Oppo. Она реализована за счет использования многоячеечных аккумуляторов, способных заряжаться параллельно. За счет этого «залить» 2500 мАч можно всего за 15 минут.
Другие технологии быстрой зарядки – это, как правило, вариации на базе QuickCharge, названные другим именем. А в целом – все они используют один принцип: сначала блок питания постепенно увеличивает ток и напряжение, подбирая максимально возможные параметры, потом на максимальной мощности происходит зарядка до 50-70 % емкости, а дальше – идет плавное снижение силы тока и напряжения.
Вредна ли беспроводная зарядка в смартфонах?
Литиевые (литий-ионные и литий-полимерные) аккумуляторы смартфонов чувствительны к силе заряда. Использование некачественного ЗУ, зарядка и разрядка с чрезмерно большими токами могут сокращать их ресурс, поэтому имеют место утверждения о вредности быстрой зарядки.
На самом деле, контроллер питания – достаточно сложно устройство, которое способно подбирать оптимальный режим пополнения емкости. Пока плотность заряда в ячейке аккумулоятора невысокая – он подбирает максимально возможную мощность зарядки. С повышением плотности химические процессы в аккумуляторе ускоряются, усиливается нагрев (а вредит именно он). Контроллер фиксирует это и уменьшает мощность питания, чтобы предотвратить нагрев. Как итог, температурный режим поддерживается в норме, негативное воздействие на аккумулятор сводится к минимуму.
В интернете часто всплывают новости о взрывах смартфонов, а страшилки про то, что это происходит из-за быстрой зарядки, очень распространены. В теории такое действительно возможно, однако часто проблема – не в технологии быстрой зарядки, а в неисправном оборудовании. Использование некачественных блоков питания и кабелей, пользование смартфонов с поврежденным аккумулятором, деформированным корпусом и т.д. – вот главные причины взрывов и возгораний.
Чтобы избежать пожара, взрыва или просто вздутия аккумулятора – достаточно соблюдать несколько простых правил. Нельзя накрывать заражающийся смартфон подушкой или другим предметом, оставлять его заряжаться на нагретом летним солнцем подоконнике или панели автомобиля. Также не рекомендуется использовать кабели и блоки питания сомнительного происхождения.
Типы быстрых зарядок и нюансы используемых кабелей
Содержание
Содержание
Современные смартфоны потребляют намного больше энергии, чем их предшественники: больше быстродействие, больше экран, больше памяти, GPS, Bluetooth, Wi-Fi. Все это прекрасно, однако емкости аккумуляторов за прогрессом не поспевают. В результате многие современные смартфоны держат заряд не более суток. Рано или поздно вы забываете поставить вечером гаджет на зарядку, а утром понимаете, что через 15 минут выходить из дома, а заряда — «на донышке». Что делать? Бежать покупать портативный аккумулятор или можно что-то сделать за эти 15 минут?
Как долго должен заряжаться аккумулятор?
Так получилось, что USB стал стандартом для зарядных устройств всех гаджетов. Но разрабатывался этот стандарт, во-первых, давно, во-вторых, совсем не для этого.
Стандарт USB был разработан еще в 1996 году. Устройства тех лет, питающиеся от разъема USB, зачастую не имели контроллеров питания и могли просто сгореть, получив большой ток. Поэтому в стандарте вплоть до версии 2.0 максимальный ток составлял 500 мА, поэтому заряда смартфона с батарейкой емкостью в 3000 мАч требовалось 7-8 часов, хотя сам аккумулятор вполне мог бы потреблять 1,5 А и зарядиться за 2-3 часа.
Именно поэтому зарядка, идущая в комплекте с гаджетом, зачастую заряжает его намного быстрее — она просто выдает повышенный ток, рассчитанный на конкретный аккумулятор.
Сам стандарт разрабатывался для передачи данных, а не для питания. Разъемы и кабели USB не предназначены для больших токов, так что производители гаджетов столкнулись с неприятностями, начав выпускать такие зарядки с токами до 5А и более. Провода кабеля USB довольно тонкие, сопротивление их высоко. Но с увеличением тока падение напряжения на кабеле и его нагрев стали довольно существенными. Кроме того, появились случаи перегрева тонких контактов разъема. Поэтому большинство обычных зарядный устройств дают на выходе до 2А, а зарядка по-прежнему длится часами.
Что такое быстрая зарядка?
Это зарядка токами 1С и выше, то есть токами, кратными емкости аккумулятора. Например, 1А для емкости 1000 м·Ач и так далее. Поначалу такой режим считался крайне неблагоприятным для литий-ионных батарей. Но со временем ситуация изменилась — зарядка током 1С уже не вызывает заметного снижения ресурса у современных аккумуляторов, а зарядка током в 2С приводит к потере примерно 20 % емкости через 500–800 циклов заряда-разряда. Да, если пользоваться быстрой зарядкой ежедневно, через пару лет вы заметите падение емкости. Но вряд ли из-за этого стоит отказываться от возможности зарядить телефон за полчаса.
Чтобы не было потерь на тонких проводах, режимы быстрой зарядки используют повышенное напряжение в кабеле. ЗУ может выдавать напряжение до 20В, а в гаджете оно понизится до требуемых 5В с соответствующим увеличением тока. Например, если ЗУ обеспечивает напряжение 20В и ток 2А, то на аккумуляторе будут 5В и 8А.
Для сохранения совместимости со старыми ЗУ и компьютерными USB, новым зарядным устройствам пришлось «поумнеть» — теперь они не сразу выдают максимальные ток и напряжение, а только после получения запроса от гаджета. К сожалению, способы «общения» ЗУ и гаджета у каждого производителя свои.
Типы быстрой зарядки
Quick Charge — стандарт компании Qualcomm, поддерживается устройствами, собранными на базе чипсетов Snapdragon, начиная с 2013 г. Максимальный поддерживаемый ток — 3А и 5A в версии 4, напряжение может меняться от 3,6 до 20 В, а также до 22 в версии 3 и до 21 в 4+. Стандарт теоретически обеспечивает до 100 Вт мощности, но практически такая мощность устройствами не поддерживается, а штатные ЗУ выдают всего 18 Вт. Контроль температуры в стандарт не вписан, так что нередки случаи перегрева при быстрой зарядке. Сейчас большинство производителей смартфонов обеспечивают контроль температуры при использовании QC. А стандарт QC 4 имеет полную поддержку протокола Power Delivery.
Adaptive Fast Charging компании Samsung основан на Quick Charge 2 и частично с ним совместим, поэтому заряжать его от ЗУ с поддержкой QC 2 можно, но зарядка идет медленнее, чем от штатного. Контроль температуры есть, так что зарядка безопасна.
Motorola Turbopower компанией Lenovo так же разработан на основе стандарта Quick Charge 2, с которым полностью совместим. Отличия незначительны, основное заключается не в самом стандарте, а в наличии штатного ЗУ Motorola на 25 Вт против 18 Вт у поддерживающих QC 2. По скорости зарядки уступает QC и PD последних версий.
Huawei Super Charge применяется на устройствах Huawei и тоже основан на Quick Charge 2. Напряжение может достигать 5В, ток — 5А, давая в итоге максимальную мощность 25 Вт. По скорости зарядки уступает QC и PD последних версий.
Pump Express разработан компанией MediaTek и поддерживается гаджетами, собранными на базе SoC этого производителя. Он также основан на Quick Charge 2, и полностью с ним совместим. Его мощность ограничена 15 Вт, поэтому на емких аккумуляторах он покажет меньшую скорость зарядки по сравнению с другими стандартами. Зато в Pump Express есть контроль температуры аккумулятора, что значительно повышает безопасность зарядки.
Быстрая зарядка Apple совместима с Power Delivery. ЗУ Apple может выдавать до 87 Вт, что позволяет быстро зарядить не только все модели iPhone, начиная с 8, но и емкие аккумуляторы iPad Pro и MacBook 12.
Oppo Vooc (и основанный на ней Dash Charge) выбиваются из остального ряда — это оригинальные, ни с чем не совместимые стандарты. Используются на устройствах OnePlus и Oppo. Зарядное устройство выдает до 25 Вт мощности. Из-за несовместимости стандартов быстрая зарядка осуществима только с помощью оригинальных зарядного устройства и кабеля.
Power Delivery — наиболее перспективный стандарт быстрой зарядки, разработанный консорциумом USB в 2015 году. Стандарт поддерживает напряжения питания до 20 В и ток до 3А, что в итоге дает до 60 Вт мощности. А наиболее перспективным он считается из-за того, что «встроен» в новый стандарт USB 3.1 и теперь любые устройства, использующие разъем Type-C, должны либо поддерживать Power Delivery, либо смириться с недовольством пользователей, пытающихся заряжать гаджеты от ЗУ с поддержкой PD. Apple и Qualcomm уже выбрали первый вариант.
USB 3.1 + Power Delivery = некоторые проблемы
Теперь «умным и быстрым» ЗУ может быть любое устройство, поддерживающее USB 3.1. Заряжаемое устройство определит возможности заряжающего порта, измерив сопротивление между парой контактов разъема — CC и Vbus. Если порт может выдать максимум 0,9 А, как обычный порт USB 3.0, сопротивление будет равно 56 кОм, 22 кОм «скажут» гаджету, что ЗУ может выдать до 1,5 А, а 10 кОм — 3А.
Но как быть с кабелями-переходниками с Type-C на USB 2.0? У первого — 24 контакта, у второго — всего 4, а тех, между которыми ЗУ должно выставлять сигнальное сопротивление, просто нет. Консорциум USB решил встраивать резисторы прямо внутрь кабеля: 10 кОм в кабеля для мощных ЗУ, 22 кОм — для ЗУ с выходным током 1,5 А, ну и для 0,9 А — 56 кОм.
А если перепутать? Чаще всего — ЗУ не даст максимального тока и зарядка будет идти в разы дольше. Если же ЗУ попытается дать гаджету ток больше, чем оно способно, то может выйти из строя, а в худшем случае — испортить и гаджет.
Масла в огонь подлили китайцы, начав засовывать резисторы 10 кОм во все кабели-переходники с Type-C на USB 2.0. В том числе и в дешевые тонкожильные, неспособные выдержать те 3А, которые он якобы должен пропускать.
Чтобы всем стало совсем «весело», консорциум USB регламентировал установку в кабели Type-C маркирующей микросхемы eMarker, информирующей оба подключенных к нему устройства о возможностях кабеля. Проблема в том, что дорогостоящий кабель с микросхемой eMarker может быстро сгореть на паре ЗУ–гаджет, поддерживающей какой-нибудь стандарт быстрой зарядки, отличной от Power Delivery. eMarker питается от 5В, а тот же QickCharge 2 и все основанные на нем протоколы запросто могут поднять напряжение питающей линии до 18 В.
Вывод один — не используйте для быстрой зарядки «случайные» кабели. Это особенно важно для кабелей с разъемами Type-C, но актуально и для старых разъемов: невооруженным глазом не заметить, что у кабеля сечение жил меньше и разъем контактирует неплотно. В результате зарядка будет идти намного дольше, и это еще не самое худшее: возникающий из-за искрения контактов нагрев может привести к повреждению разъема или вообще к воспламенению прилегающего пластика. Настоятельно рекомендуется не пользоваться для зарядки «чужими» проводами, пусть они и выглядят подходящими.